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Abstract 

The linear instability of Gertler vertices in c~mpressfblr beandary 

layers is considered. Using asymptotic methods in the high wavenumber regime, 

it is shown that a growth rate estimate can be found by solving a sequence of 

linear equations. The growth rate obtained in this way takes non-parallel 

effects into account and can be found much more easily than by ordinary 

differential equation eigenvalue calculations associated with parallel flow 

theories. 
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1. INTRODUCTION .. 
Our concern is with the linear growth of Taylor-Gortler vortices in com- 

pressible boundary layers. We develop a simple method for generating curves 

of constant amplification rates in the high wave number regime. 
.. 

The growth of Taylor-Gortler vortices in incompressible boundary layers 

has received a lot of attention in recent years due to its relevance to 

Laminar Flow Control (see for example Harvey and Pride [ l ] ) .  The original 

calculation by Gortler [ 2 ]  showed that Taylor’s [ 3 ]  instability mechanism 
.. 

which occurs for curved flows also operates in boundary layer flows. However, 

the relative complexity of the basic state for a boundary layer flow makes it 

a much more difficult task to examine the instability of this state theoreti- 

cally. Thus, the essential difficulty with the linear instability problem is 

that the growth of the boundary layer cannot in general be ignored and the 

appropriate linear instability equations are therefore partial differential 

equations. 
.. 

The original calculation by Gortler ignored the effect of boundary layer 

growth completely and his numerical results were later corrected by Hammerlin 

[ 4 ]  who found that instability occurs first at zero wavenumber. Later calcu- 

lations by Hammerlin [ 5 ]  and Smith [ 6 ]  attempted to remedy this deficiency by 

including higher order curvature terms or terms associated with the non- 

parallel nature of the basic state. Further work by Herbert [71 for example 

was aimed at understanding why the various linear theories did not give con- 

sistent results. 

Floryan and Saric [81 gave a multiple scale approach to the linear 

Gortler instability problem along the lines of, for example, the work of 
.. 

Gaster [ 9 ]  or Saric and Nayfeh [lo] for Tollmien-Schlichting waves. Thus, 
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Floryan and Saric derived the partial differential equations governing the 

growth of Gortler vortices. These equations had been given in a more general 

context some years earlier by Gregory, Stuart and Walker [ l l ]  who discussed 

the instability of three-dimensional boundary layers. The equations can also 

be inferred from the work of Smith [ 6 ] .  The solution given by Floryan and 

Saric [ 8 ]  followed the approach of previous investigations and implicitly made 

a parallel flow approximation. By the latter phrase we mean that some intrin- 

sic property of the nonparallel nature of the basic state was ignored in solv- 

ing the disturbance equations. In fact, the above authors replace streamwise 

partial derivatives of the vortex by local spatial growth rates thus reducing 

the system to a set of ordinary differential equations. It is not clear how 

such an approach can be justified but when the growth rate vanishes the solu- 

tion can be interpreted as a local Taylor series solution of the full partial 

differential equations. The relevance of the solution elsewhere is not 

immediately apparent. 

.. 

More recently, Hall [12-131 has shown how asymptotic and numerical 

methods can be used to take non-parallel effects into account i n  a self- 

consistent manner. In the first paper, it was shown that small wavelength 

Gortler vortices can be described asymptotically using a multiple scale 

method. Hall found that the vortices locate themselves so as to maximize 

their local spatial growth rate. This requires that the vortices are con- 

centrated in a viscous layer in the interior of the flow. 

.. 

In the linear regime, Hall [13 ]  solved numerically the full partial dif- 

ferential instability equations at O ( 1 )  wavenumbers. The linear equations 

were found to be parabolic in the streamwise direction so that an initial dis- 

turbance was imposed at some location and its development followed as the 
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equations were marched downstream. The growth of the disturbance was followed 

by calculating the local rate of change of a disturbance energy density. The 

neutral position was defined to be the location where this local growth rate 

vanished. Not suprisingly, it was found that this position was a function of 

the location and form of the initial disturbance. Thus it was concluded that 

there exists no unique neutral curve for the Gortler problem. However, at 

high wavenumbers, the different neutral curves merge into the asymptotic and 

parallel flow neutral curves. The same would be true for the different 

possible growth rate curves. 

.. 

Thus, in the only regime where analytical progress is possible, the 

growth rate can be written down in asymptotic form and no numerical eigenvalue 

calculations are required. It is this idea which we will now apply to c o w  

pressible boundary layers to show how growth rates for these flows can be 

simply calculated. 

Previous calculations of the compressible Gortler problem have used the 

parallel flow assumption to reduce the instability problem to an eigenvalue 

problem associated with an eighth order differential system. (See for example 

Aihara [ 1 4 ] ,  Kobayashi and Kohama [ 1 5 ]  or El-Hady and Verma [ 1 6 ] . )  In 

particular, El-Hady and Verma formulated the linear stability problem along 

the lines of Floryan and Saric [ 8 ]  and gave curves of constant growth rate for 

various flow conditions. We show how these curves can be generated much more 

simply in the only regime where they are meaningful. The method we use is 

based on the asymptotic theory of Hall [ 1 2 ]  for the incompressible problem. 

The method can be easily used for any flow configuration and needs little 

computational power. The method is based on the assumption that the vortex 

wavelength is small compared t o  the boundary layer thickness. The range of 
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validi y of the me hods can only h check d by numerical solution of the 

full partial differential system governing the growth of vortices in growing 

compressible boundary layers. However, in general the high wavenumber regime 

is ultimately always applicable to any constant wavelength disturbance vortex 

developing in a growing boundary layer and so is therefore always physically 

relevant. 

The procedure adopted in the rest of this paper is as follows: In See- 

tion 2, we formulate the partial differential system governing small Gortler 

vortex disturbances in compressible boundary layers. In Section 3, we solve 

these equations for large wavenumbers and determine the spatial growth rates 

of the disturbances. Finally, in Section 4 we present our results and draw 

some conclusions. 

.. 

2. FORHULATION OF THE INSTABILITY EQUATIONS 

Apart from some minor differences, our formulation is essentially the 

same as that of El-Hady and Verma and so the reader is referred to that paper 

for more details. We choose L to be a typical streamwise length scale and 

take V,’ u,, P,, T,’ P, to be the scales for the kinematic viscosity, 

velocity, density, temperature, and coefficient of viscosity respectively. If 

the curvature of the wall at the streamwise location x is - K ( ~ )  , we 

define the curvature parameter 6 by 

* * 1 x  
A 

and a Reynolds number R by 

.. 
and consider the limit R + with the Gortler number 
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G = 2R 'I2 6 

held fixed. The free stream Mach number M, is defined by 

U 03 

(2.4) M =-  
O0 JVRT, 

where y and R are the ratio of specific heats and gas constant re- 

spectively. We define (x,y,z) to be dimensionless variables in the stream- 

wise, normal and spanwise directions scaled on L, R-1/2L, and R-lI2L 

respectively. We shall assume that the vortices grow spatially in the x 

direction and therefore we consider them to be steady. 

The basic flow is written in the form 

where 

( P a x  + (p;>y = 0, 

(2.5a) 

(2.5b) 

(2.5d) 

(2.5e) 
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- 
together with condition on T and u as y + m. Here r is the Prandtl 

number whilst T is the wall temperature. 
W 

We now perturb (2.5) to a disturbance periodic in the z direction. The 

velocity components of the disturbance and temperature are scaled in an 

identical manner to the corresponding basic state quantities. The linearized 

instability equations take the form 

- - - 
T T Y  

- 
N -  N -  

(UU + V U ) + ( p u ) ] T - l ~ u  T = O ,  
X Y Y Y  Y Y  

(2.6a) 

- 
p iau + (c+l) ria uX + ia v + (c+l) Liav - iaP 
X Y Y 

- - 
2 v -  - (c+2) pa W - - + cz (zx + 7 ) iaT - - pWx 

Y 
u -  

T pwY T 

+ cir WYlY = 0 ,  (2.6~) 



1 

- - - -  P -  2 - -  P -  P - TxU - 2(y-1)  M, p u U + - T 
T T 

V - [- (G Tx + V T 
Y Y  T Y  -2 Y - 

- - 
+ (y-1) ~ , p  2 - -2 uY + T ( i T )  1 1 T + - u T ~ + ~ ~ T  P -  P 2  

T Y Y  

(2.6d) 

(2.6e) 

Here p = - and a is the spanwise wavenumber. We note that the above 
d T  - -~ 

equations can be simplified if p is independent of x; in that case, we 

can set p = 1 in which case (2 .6)  reduce to the equations of El-Hady and 

Verma. The Gortler number G is defined by ( 2 . 3 ) ,  c = r/r where A is the 

- 
- .. 

bulk viscosity. Equations (2 .6)  are to be solved subject to the perturbation 

quantities vanishing at y = 0 ,  OD. 

3. TEE HIGH W A V E m E R  SOLUTION FOR M, - O( 1) .. 
It is known from the work of Hall 112-131 that small wavelength Gortler 

vortices are located in the boundary layer so as to maximize their local 

spatial amplification rate. For the incompressible case and zero amplifica- 

tion rate, this position corresponds to where Rayleigh’s criterion is most 

violated. The depth of this layer is 0(a-lI2) so we define rl by 
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- 
where y(x) is the as yet undetermined location of the layer. The stream- 

wise disturbance velocity fn  this layer expands as 

where 

- 
Similar expansions hold for Va-2, Wa-312, and T whilst u 

expands as 
- - - 
u = uo (x) + uln a - l l2  + 0 . .  

Again, similar expansions for T, and hold. The details of the expan- 

sion procedure are essentially identical to those of Hall [12] so we shall 

omit a lot of detail here. The Gortler number G expands as 
.. 

4 G = g a  . 0 

It is convenient to define the matrix A by 

A(x,y) = 

0 - - + -  

=0 
r - 

TO 

7 (3.3) 
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i 

- 
Here p has been set to unity since for the asymptotic solution, pressure 

may be rescaled by local edge pressure. If the above expressions are sub- 

stituted into the disturbance equations and like powers are equated, we obtain 

the system of equations 

at zeroth 

and 

rder whilst the next two order systems yield 

The coefficient matrices C ,  E, and F can be written down in terms of 

quantities involving basic flow quantities. The system ( 3 . 4 )  has a nontrivial 

solution if 

1AI = 0 ( 3 . 6 )  

and 7 determines three possible spatial 80 which for a given choice of 

amplification rates The first order solution can then be written as 0-  

(“3 = uo(ll,x> 

TO 

- 
- To - - 

1 I U 1 
- 
UO* 0 

[- - 
TO 

+ 

‘ 0  

(3.7) 
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=Uoa . 

The system 

ATR 3 ' 0  + 

w i l l  then have a so lu t ion  and w i l l  be needed a t  higher  order .  Here, 

A t  t h i s  stage y'(x) and U0(q,x) remain 

order  we f ind  t h a t  (3.5) has a so lu t ion  only i f  

undetermined but  a t  next  

- 
and t h i s  f i x e s  t he  l o c a t i o n  y(x) .  Phys ica l ly  (3.8) can be i n t e r p r e t e d  as 

t h e  condi t ion t h a t  B o  has  a maximum a t  the  l a y e r  y = y .  The s o l u t i o n  

of (3.8) can then be w r i t t e n  i n  the  form 

- 

where (a, 6) s a t i s f i e s  



-1 1- 

- 2  
T1 

= (0, 7 - 
TO -- 
UITl U T  

- P1, (-- BO 0 1  

TO TO 
(- 7 'iil - - rn 

'0 

Here 

(3.9) 

Finally, Uo is determined when the required solvability condition is 

applied to (3.6); this yields 

2 u orlrl + Yrl  uo + hS1Uo = 0. 

Here E ,  y ,  and h are defined by 

(3 .  io j 

The coefficient matrices E, C and F are given in Appendix A. The solu- 

tions of (3.10) which decay to zero when can be written down in 

terms of parabolic cylinder functions, the most unstable one is 

l r l l  + 

and the corresponding eigenrelation is 

(3.12) 

(3.13) 
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.. 
If we were interested in finding the neutral Gortler number, we would have 

included higher 

(3.13) would be 

in the expansion 

order terms in (3.2) and set B o  = f3, = 0. In that case, 

replaced by an equation to find gl, the order a term 

of the neutral Gortler number. 
.. 

We now summarize the steps required to find B O  and B l--the first 

Firstly, at any two terms in the expansion of the spatial amplification rate. 

depth y, the cubic equation specified by the condition 
- 

- is solved €or the three possible values of Bo. The value of y is then 

varied until (3.8) is satisfied and then B 1  is determined by (3.13). 

Thus, it is not necessary to solve any differential equations numerically to 

The answer we obtain is formally valid when a >> 1, 

at smaller values of a it is at least as valid as the solution of El-Hady 

and Verma which would require large amounts of computer time. At progressive- 

ly higher values of a, the different approaches will converge. At finite 

values of the wavenumber a full numerical solution of (2.6) along the lines of 

Hall [13 ]  is required. We now turn to the results we have obtained using the 

above approach. 

1' obtain B o  and B 

4. RESULTS AND DISCUSSION 

In Figure 1, we have shown curves of equal spatial amplification rate at 

a Mach number of 2 in the wavenumber - Gortler number plane. These curves 

correspond to the adiabatic wall condition being applied to the temperature. 

.. 
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! 

The stagnation temperature is held at 311°K. The results shown are formally 

valid at large values of a and are then the only unique amplification rates 

which exist for the Gortler problem. In this figure the wavenumber is made 
.. 

r* 
/‘ex non-dimensional by using L = - . Similar curves f o r  Mach number of 4 
U e 

and 6 are given in Figures 2 and 3 respectively. We note that the constant 

growth rate curves extend to small wavenumbers for higher Mach numbers. How- 

ever, the small wavenumber region is perhaps beyond the range of validity of 

the theory. The neutral curves for all three Mach numbers are shown in Figure 

4 .  These curves shift towards the left with incre’asing Mach number, indicat- 

ing the stabilizing effect of compressibility. 

Next, we perform a calculation which is of direct engineering signifi- 

cance. We consider the Sotindary layer 01; t h e  wall of a supersonic nozzle  (see 

reference [ 1 7 ] ) .  Transition in this boundary layer is caused by Gortler 
.. 

vortices. The flow accelerates to Mach 3.5 towards the exit of the nozzle. 

The distribution of the local edge Mach number, Hartree’s pressure gradient 

parameter (f3,), and the Gortler number based upon momentum thickness e 

are plotted in Figure 5. The amplification factor (N = I a(x)dx) for 

Gortler vortices is computed for a fixed physical wavelength (local nondimen- 

.. 
X 

.. 

sional wavenumber is also plotted in the figure) using the current asymptotic 

theory and the parallel theory used in the computations of reference [ 17 ] .  

For design purposes, the agreement between the two approaches is fairly good 

but it should be noted that the parallel theory calculations requires at least 

30 times as much computer time when compared with the asymptotic calculations. 
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APPENDIX A 

The non-zero elements of the coefficient matrices C, E, F (Equation 

3.11) are 

- -- -- - - T u  T2 a 1 1  

TO To To 

U T  
1 1 - - -)] + [r - 2 u21 $ 0  - - [U2 - - + u , ( [ r l  c11 = 3 - 

TO TO TO 

- U T  2 1  - T1 T2 
[-3u3 + 2 - ul((:) - 3 1  

TO TO 

- - 
- - -- 

5 2  = r 1 

- TO 

-- uo( 

-- TO 

T1 

TO TO 

U T  1 1  - 
- 21 C 

go - - - [-u2 
TO 

- -  + L - -11 - 
TO 

T u  B O  1 0  - afu. + - (U. - -)I 

- - -  
U T  0 1  (U1 - Bgouo 

TO 

[G2 - - B O  
3 2  = -9 - 

TO 

+- -2 
- - TO -- 

- -  
- - -  - - -  

U T  T1 T 2 TIUO 

2T0 TO TO TO TO 
- - -1) + (El - 1 [2Eo{u2 - - + u,[(-) 

1 0 Bo PIT1 a T1 [2 T2 - -1 - - B[(G, - ---I - - 
TO TO To To 

1 1  - - - 
- 2 ‘23 - 

-- 
T u  -2 

-1 - r - - 
‘31 - - -  - 
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Figure 1. Curves of constant growth u in Gortler number--wave number 

plane for M = 2. 
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Figure 2. Same as Figure 1 except for M = 4 .  
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Figure 3. Same as Figure 1 except for M = 6 .  
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Figure 4. Effect of compressibility on neutral (a = 0) curves. 
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